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ABSTRACT

Solar magnetic fields comprise an 11-year activity cycle, represented by the number of sunspots. The

maintenance of such a solar magnetic field can be attributed to fluid motion in the convection zone,

i.e. a dynamo. This study conducts the mean-field analyses of the global solar dynamo simulation

presented by Hotta et al. (2016). Although the study succeeds in producing coherent large-scale

magnetic fields at high Reynolds numbers, the detailed physics of the maintenance of this field have

not been fully understood. This study extracts the α-tensor and the turbulent magnetic diffusivity

tensor β through mean-field analyses. The turbulent magnetic diffusivity exhibits a significant decrease

towards high Reynolds numbers. The decrease in the turbulent magnetic diffusivity suppresses the

energy conversion of large-scale field to small-scale field. This implies that the decrease in the turbulent

magnetic diffusivity contributes to the maintenance of a large-scale magnetic field at high Reynolds

numbers. A significant downward turbulent pumping is observed; it is enhanced in the weak phase

of the large-scale field. This study proposes a cyclic reversal process of a large-scale field which is

dominantly driven by the α-effect and is possibly triggered by downward pumping.

Keywords: Magnetohydrodynamics(1964) - Solar convection zone(1998) - Solar dynamo(2001) - Solar

magnetic fields(1503)

1. INTRODUCTION

Solar magnetic fields comprise an 11-year activity cy-

cle, represented by the number of sunspots. They are

also characterized by their large-scale coherent struc-

tures and polarity reversals. The prominent examples

are the 11-year polar field reversals and the sunspot par-

ity rules (Hale et al. 1919). The maintenance of such a

solar magnetic field can be attributed to fluid motion in

the convection zone, i.e. a dynamo.

Gilman (1983) and Glatzmaier (1984, 1985) conducted

studies using global three-dimensional (3D) magnetohy-

drodynamics (MHD) simulation. Furthermore, various

3D MHD simulations have been conducted in the past

decade (Racine et al. 2011; Nelson et al. 2013; Masada
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et al. 2013; Fan & Fang 2014; Simitev et al. 2015; Duarte

et al. 2016; Guerrero et al. 2016; Hotta et al. 2016;

Käpylä et al. 2017; Strugarek et al. 2018; Hotta & Ku-

sano 2021). Although realistic Reynolds numbers are

large values of Re w 1013 and Rm w 1010 at the base

of the convection zone (Ossendrijver 2003), most of the

calculations used those of lower values of approximately

100-300 (Charbonneau 2020), i.e. they used large vis-

cosity and magnetic diffusivity (w 1012 cm2 s−1) to sup-

press the small-scale fluctuating field and obtain a co-

herent large-scale magnetic field. The main drawback

found by previous studies was that the energy and co-

herence of the large-scale magnetic field were destroyed

at higher Reynolds numbers. In this context, Hotta

et al. (2016) succeeded in producing a coherent large-

scale magnetic field at higher Reynolds numbers using

high-resolution calculations. They reported that an effi-

cient small-scale dynamo suppresses the small-scale flow,

which consequently maintains the large-scale magnetic
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Table 1. Lists of calculated cases.

Case Low Mid High

(Nr, Nθ, Nϕ)
(1)

(64× 192× 384) (64× 192× 384) (192× 384× 768)

Diffusivities
(2)

[cm2 s−1] 1×1012 0 0

Run times [yr] 117 36 31

Rm
(3)

319 336 551

Pm
(3)

1 1.40 1.77

Eturb

(4)
[106 erg cm−3] 1.6 2.3 2.7

Emean

(4)
[104 erg cm−3] 16.5 9.7 9.8

(1) The number of grid points are counted on the spherical coordinate projected from
Yin-Yang grid (Kageyama & Sato 2004). (2) Imposed explicit diffusivities at the top
boundary are presented in the tables. The explicit viscosity and explicit diffusivity
have identical values. All cases also include the artificial viscosity reported by Rempel
(2014). (3) The magnetic Reynolds number (Rm) and magnetic Prandtl number (Pm)
are estimated from the energy spectra (Hotta et al. 2016). (4) The energy densities of
the small-scale magnetic field (Eturb) and large-scale field (Emean) at the base of the
convection zone (0.71R� < r < 0.73R�) are presented. These values are considered
as temporal average over 5.5-27.4 yr.

field. However, the specific physics involved in main-

taining the large-scale magnetic field and reversing its

polarity must be further analyzed.

Other approach to study the solar dynamo is the

mean-field electrodynamics (Steenbeck et al. 1966), in

which the large-scale magnetic field is considered as the

mean field. This approach is useful in analyzing the

physics of the 3D MHD calculations due to its simplic-

ity. Racine et al. (2011) developed a method which ex-

tracts the mean-field parameters, that is, the α-tensor

from the calculation using singular value decomposition.

The mean-field approach was used to identify the ma-

jor factors contributing to the induction of a large-scale

magnetic field (see Brown et al. 2010; Nelson et al. 2013;

Augustson et al. 2015).

This study aims to understand the physics involved in

maintaining a coherent large-scale magnetic field at high

Reynolds numbers. The mean-field analyses of the re-

sults of the 3D MHD simulations (Hotta et al. 2016)

are conducted for this purpose. Particularly, the α-

tensor and β-tensor are extracted, and each term of the

induction equation of the mean-magnetic field is esti-

mated. Section 2 presents the basic settings of the sim-

ulation and the realization of a large-scale field. Section

3 presents the procedures and results of the mean-field

analyses. Section 4 presents the maintenance and po-

larity reversal of a global-scale magnetic field at high

Reynolds numbers. Lastly, Section 5 presents the con-

clusion.

In the course of our analysis and discussion, the ra-

dial pumping (γr) grabs the spotlight. The effect of the

radial pumping on the solar cycle is first examined by

Brandenburg et al. (1992) using the mean-field simu-

lation. The background of this study is the existence

of radial pumping in the convection zone suggested by

Nordlund et al. (1992), which conducts local Cartesian

simulation. Brandenburg et al. (1992) artificially select

the value of γr in their simulation at that time. Esti-

mation of the radial pumping in 3D MHD simulation

started by Ossendrijver et al. (2002) using local Carte-

sian simulation. In our work, the global 3D MHD sim-

ulation is used to obtain the global distribution of γr.

This allows us to estimate the distribution of induction

by radial pumping and gain insight into polarity rever-

sal. Furthermore, it is noteworthy that γr under the

several Reynolds numbers are extracted and discussed

in this work.

2. OVERVIEW OF THE SIMULATION

This section presents a detailed description of the ba-

sic setting of the simulation and the realized large-scale

field.

2.1. Basic settings

The data are calculated using a similar approach as in

Hotta et al. (2016). The simulation adopts the reduced

speed of sound technique (RSST) (Hotta et al. 2012)

and solves the 3D MHD equations in spherical geometry
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Figure 1. Snapshot of (a) radial velocity vr and (b) logitudinal magnetic field Bϕ at t = 5.5 yr when large-scale field is
constructed.

(r, θ, ϕ) with gravity and rotation as follows:

∂ρ1
∂t

= − 1

ξ2
∇ · (ρv), (1)

ρ
∂v

∂t
= −ρ(v · ∇)v + 2ρv ×Ω0 −∇

(
p1 +

B2

8π

)
+∇ ·

(
BB

4π

)
− ρ1ger −∇ ·D, (2)

ρT
∂s1
∂t

= −ρT (v · ∇)s+
1

r2
d

dr

(
r2κrρ0cp

dT0
dr

)
+Γ(r) +∇ · (κρ0T0∇s)

+2ρν

[
eijeij −

1

3
(∇ · v)2

]
+
η

4π
(∇×B)2, (3)

∂B

∂t
= ∇× (v ×B − η∇×B), (4)

p1 =

(
∂p

∂ρ

)
s

ρ1 +

(
∂p

∂s

)
ρ

s1, (5)

where ρ, p, s, T , v, and B represent the density,

gas pressure, specific entropy, temperature, fluid veloc-

ity, and magnetic field, respectively. The radial ex-

tent is restricted to r1 < r < r2 (r1 = 0.71R�, r2 =

0.96R�). The subscript, 0, denotes the background

spherically symmetric stratification; the solar standard

model (Model S: Christensen-Dalsgaard et al. 1996) is

employed for this calculation. The subscript, 1, denotes

the fluctuation from the background stratification. ξ is

the parameter in the RSST, which reduces the effective

speed of sound by a factor of ξ. The gravitational accel-

eration, g, and radiative diffusivity, κr, are adopted from

Model S. The rotation rate is set as the solar rotation

rate, |Ω0|/(2π) = 413 nHz (Thompson et al. 2003). Γ(r)

is the cooling term, which is effective only near the sur-

face. D and eij represent the viscous stress tensor and

strain rate tensor, respectively. A strong thermal con-

ductivity κ = 2 × 1013 cm2 s−1 at the top boundary is

adopted to obtain a solar-like differential rotation. The

thermal conductivity, κ, explicit viscosity, ν, and ex-

plicit magnetic diffusivity, η, are set to have a radial

dependence of 1/
√
ρ0 (Fan & Fang 2014).

The analyzed cases are listed in Table 1. These cases

are distinguished by the number of grid points and the

imposed diffusivities. Case High contains twice as many

grid points as the other cases in each direction. The ex-

plicit diffusivities, i.e., magnetic diffusivity and viscosity,

are imposed in case Low, and only numerical diffusivities

exist in the other cases.

The estimated magnetic Reynolds number (Rm) and

magnetic Prandtl number (Pm) are listed in Table 1.

The magnetic Reynolds and Prandtl numbers are eval-

uated using the energy spectra in cases Mid and High

since no explicit diffusivities are used and the dissipa-

tions are all produced by numerical ones (see Hotta

et al. 2016). The magnetic Reynolds number increases

slightly from Low to Mid and significantly increases to-

ward High.

The main differences between this simulation and

Hotta et al. (2016) are the artificial diffusivity and the

number of grid points. The artificial diffusivity sug-

gested by Rempel (2014) is implemented on all physi-

cal quantities in ours, whereas one suggested by Rempel

et al. (2009) is used exceptionally on density in Hotta

et al. (2016) . The number of grid points for each direc-

tion in our case High is half as many as the counterpart.

2.2. Large-scale field

Figure 1 presents the snapshots of radial velocity and

longitudinal magnetic field in case High. Because the ob-

tained large-scale magnetic field obviously has axisym-

metric feature, we define mean-field component of given

physical quantity Q by:

〈Q〉 (t, r, θ) =
1

2π

∫ 2π

0

dϕ Q(t, r, θ, ϕ) (6)
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Figure 2. Temporal evolution of the radial distribution of
〈Bϕ〉 at r = 0.72R�

and fluctuating one by:

Q′(t, r, θ, ϕ) = Q(t, r, θ, ϕ)− 〈Q〉 (t, r, θ), (7)

for discussions. Hereafter, 〈〉 and ′ denote the operations

described in Equations (6) and (7).

The large-scale magnetic field is concentrated around

the base of the convection zone (r < 0.8R�) (see Figure

15 in Appendix A). The temporal evolution of the mean

toroidal magnetic field 〈Bϕ〉 at the base of the convec-

tion zone is shown in Figure 2. All the cases have spa-

tially coherent structures at lower latitudes (|Θ| . 30◦,

Θ = 90◦−θ). These cases also exhibit irregular polarity

reversals of the large-scale magnetic field. The reversal

occurs every 5-10 yr in case Low and every 2-5 yr in the

other cases.

The strengths of the large-scale and small-scale mag-

netic fields depend on the cases. The energy densities of

the large-scale and small-scale magnetic fields are calcu-

lated as follows:

Emean =
1

V

∫
V

dV
1

8π
〈B〉2 , (8)

Eturb =
1

V

∫
V

dV
1

8π
B′2, (9)

Figure 3. Energy densities of the large-scale magnetic field
Emean and the small-scale magnetic field Eturb at the base
of the convection zone (0.71R� < r < 0.73R�) are shown.
Eturb is considered as the temporal average over a period of
5.5-27.4 yr, and Emean is averaged over the period in which
Emean exceeds 5×104 erg cm−3 from 5.5-27.4 yr. Error bars
indicate standard deviations.

where V denotes the integrated volume. A volume local-

ized at the base of the convection zone (r < 0.73R�) is

used for V in the following discussion. Figure 3 presents

Emean and Eturb. The energy density of the large-scale

magnetic field decreases from case Low to Mid and re-

mains at the same level from case Mid to High. Con-

versely, the energy density of the small-scale magnetic

field monotonically increases toward case High with the

increase in the magnetic Reynolds number. Emean is av-

eraged over the period in which Emean exceeds 5 × 104

erg cm−3 in 5.5 yr < t <27.4 yr. The purpose of this op-

eration is to avoid the misreading of the energy density

of the large-scale magnetic field by including the period

of polarity reversal. The large-scale magnetic field ob-

served in case Mid is incoherent in time and does not

vanish when the polarity is reversed, whereas that of

cases Low and High is coherent in time and vanishes for
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Figure 4. (a) Differential rotation from case High is plotted
on meridional plane. (b) Latitudinal mean flow 〈vθ〉 from
case High is plotted on the meridional plane.

Figure 5. The kinetic (solid) and magnetic (dotted) en-
ergy spectra at r = 0.72R�. The blue, green, and orange
lines represent the results from cases Low, Mid, and High,
respectively. The averaged period is from 5.5 yr to 27.4 yr.

a significant amount of time (w1 yr) when the polarity

is reversed (Figure 2).

Figure 4 depicts the mean flow field. It exhibits solar-

like differential rotation such that the equator region

rotates faster than the polar region. The shear of the

differential rotation decreases in case Mid and recovers

in case High. The mean meridional flow indicates the

existence of two-cell circulation in each hemisphere and

elongated structures parallel to the rotation axis at low

latitudes. The basic structures are almost identical in

all the cases.

The relative importance of the magnetic field and the

flow field depends on the scale, and it can be measured

using the energy spectra. The kinetic energy spectra

(EKE(`)) is compared with the magnetic energy spec-

tra (EME(`)). Our normalization satisfies the following

relations:

1

4π

∫ π

0

dθ

∫ 2π

0

dϕ sin θ
v2

2
=
∑
`

EKE(`)/r, (10)

1

4π

∫ π

0

dθ

∫ 2π

0

dϕ sin θ
B2

8πρ0
=
∑
`

EME(`)/r, (11)

where ` denotes the spherical harmonic degree, v and

B represent both the mean-field and fluctuating com-

ponents, and ρ0 represents the density of the back-

ground stratification. Figure 5 depicts these quantities

at r = 0.72R� from cases Low, Mid, and High. For

cases Low and Mid, the kinetic energy exceeds the mag-

netic energy in almost all the spatial scales, whereas the

magnetic energy exceeds the kinetic energy at a smaller

scale for case High. This tendency in case High is also re-

ported by Hotta et al. (2016), in which they concluded

that the small-scale dynamo efficiently suppresses the

turbulent flow, and a large-scale magnetic field is real-

ized as a result.

3. MEAN-FIELD ANALYSIS

The induction equation of the mean magnetic field is

given by:

∂ 〈B〉
∂t

= ∇× (〈v〉 × 〈B〉+ E − η∇× 〈B〉), (12)

where E represents the so-called turbulent electromotive

force (EMF), described as:

E = 〈v′ ×B′〉 . (13)

The EMF can be described by an expansion of the mean

magnetic field component and its first derivatives as fol-

lows:

E = a · 〈B〉+ b · ∇ 〈B〉 , (14)

where a denotes a rank-two tensor and b denotes a rank-

three tensor. To obtain a more physically meaningful

form, Equation (14) can be rewritten as:

E = α · 〈B〉+ γ × 〈B〉 − β · (∇× 〈B〉)
−δ × (∇× 〈B〉)− κ · (∇〈B〉)(sym), (15)

where

αij =
1

2
(aij + aji), γi = −1

2
εijkajk

βij = −1

4
(εilmbjlm + εjlmbilm),

δi =
1

4
(bjij − bjji), κijk = −1

2
(bijk + bikj) (16)
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(see Schrinner et al. 2007). (∇〈B〉)(sym) represents the

symmetric part of the gradient tensor, which is defined

as:

(∇〈B〉)(sym) =
1

2
{(∇〈B〉) + (∇〈B〉)T}, (17)

where T is a transpose operation. The signs of βij and

δi differ from those in Schrinner et al. (2007). α and

β are symmetric rank-two tensors, γ and δ are vectors,

and κ is a rank-three tensor. The α-term is used to

describe the α-effect, which represents the contribution

from helical flow. γ is the virtual velocity known as tur-

bulent pumping, which advects, shears, and compresses

the mean-field as if it is the physical velocity. The β

term works as the turbulent diffusion.

3.1. α-tensor and β-tensor

The α-tensor, γ-vector, and β-tensor are extracted

from the 3D simulation results to understand mean-field

induction. The method reported in Simard et al. (2016)

is employed in this procedure. This method is an exten-

sion of Racine et al. (2011) to include the first derivatives

of the mean field in the fitting procedure. It is based on

a linear least-squares fit of the temporal variation of the

EMF to that of the mean magnetic field component,

along with the component of its first derivatives. The

relation between the EMF and the mean magnetic field,

which is used for the linear least-squares fit, given by:

Ei(t, r, θ) = ãij(r, θ) 〈Bj〉 (t, r, θ)

+b̃ijr(r, θ)
∂ 〈Bj〉
∂r

(t, r, θ)

+
b̃ijθ
r

∂ 〈Bj〉
∂θ

, (18)

ã and b̃ are pseudo-tensors and are assumed to be time-
independent. The following procedures are performed at

each grid point, (rb, θc), and for each component, (m =

r, θ or ϕ), of the EMF. We define

y(t) = Em(t, rb, θc), (19)

Xk(t) = [〈Bk(t, rb, θc)〉 ,
∂ 〈Bk(t, rb, θc)〉

∂r
,

1

r

∂ 〈Bk(t, rb, θc)〉
∂θ

]
, (20)

and

Φk =
[
ãmk(rb, θc), b̃mkr(rb, θc), b̃mkθ(rb, θc)

]
, (21)

where k = r, θ, or ϕ. Subsequently, the fitting formula

for Equation (18) can be written as:

y(t) =
∑
k

ΦkXk(t). (22)

A merit function χ2 is defined as:

χ2 =

Nt∑
i=1

[
y(ti)−

∑
k

ΦkXk(ti)

]2
, (23)

where Nt denotes number of time steps ti of the data.

The best value for Φk is obtained by minimizing the

merit function, χ2, using singular value decomposition

(SVD). The design matrix, A, in the SVD is formed as:

Aij = Xj(ti). (24)

This matrix can be decomposed as:

A = U ·w ·VT, (25)

where U is an Nt × 9 orthogonal matrix, w is a 9 ×
9 diagonal matrix containing the singular values, and

V is a 9 × 9 orthogonal matrix. The solution, Φ =

(Φ1, · · · ,Φ9), is given by:

Φ = V ·w−1 ·UT · y, (26)

where Φ1,Φ2,Φ3 correspond to the r, θ, ϕ component of

ãmk, Φ4,Φ5,Φ6 correspond to the r, θ, ϕ component of

b̃mkr, and Φ7,Φ8,Φ9 correspond to the r, θ, ϕ component

of b̃mkθ. Each parameter, Φk, includes the variance, σ2
k,

which is given by:

σ2
k = σ2

9∑
l=1

(
Vkl
wll

)2

, (27)

where σ2 denotes the variance of the merit function,

and Vkl and wll represent the elements of the V and w

matrices. The relations between these pseudo-tensors

(ã and b̃) and the true-tensors (a and b) considering

the curvilinear nature of the spherical coordinate system

(see Schrinner et al. 2007, for further details), are given

as:

air = ãir − b̃iθθ/r, (28a)

aiθ = ãiθ + b̃irθ/r, (28b)

aiϕ = ãiϕ, (28c)

bijr = b̃ijr, (28d)

bijθ = b̃ijθ, (28e)

bijϕ = 0. (28f)

The α-tensor, γ-vector, and β-tensor are automatically

determined through Equations (16) and (28) after ã and

b̃ are estimated by the fitting procedure. δ-vector and

κ-tensor are also obtained in this procedure.

Firstly, the results of the α-tensor and γ-vector ob-

tained through this procedure are explained for each
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Figure 6. Components of the a-tensor extracted from case
High plotted in meridional plane. The signs of γθ, αrθ, and
αθϕ are different from those in Racine et al. (2011) because
of the definition of the coordinates.

case using the entire simulation interval. Figure 6
presents the result from case High. The diagonal compo-

nents, αrr, αθθ, and αϕϕ are all antisymmetric about the

equator and have different signs between the surface and

the base. Radial pumping, γr, is downward (negative)

in most of the convection zone and upward (positive) in

the subsurface. The latitudinal pumping, γθ, is equator-

ward (positive/negative in the northern/southern hemi-

sphere) in the lower convection zone and polarward (neg-

ative/positive in the northern/southern hemisphere) in

the subsurface. These properties are consistent with

those of previous studies (Racine et al. 2011; Augustson

et al. 2015; Simard et al. 2016). It can be observed that

the global structures of the α-tensor are similar to those

of the other cases. The resultant α-tensor and γ-vector

do not significantly vary from those estimated using the

method reported in Racine et al. (2011), which does not

Figure 7. Components of the β-tensor extracted from case
High plotted in meridional plane.

include the first derivatives of the mean magnetic field

in the fitting procedure (see Appendix B).

The importance measure, εij , introduced by August-

son et al. (2015), is used to measure the relative impor-

tance of each component. It is defined as:

εij =
3

2E(r32 − r31)

×
∫ r2

r1

dr

∫ π

0

dθ r2 sin θ

√
aijaij
{v′ · v′}

, (29)

where

E =
3

2(r32 − r31)

×
∑
i,j

∫ r2

r1

dr

∫ π

0

dθ r2 sin θ

√
aijaij
{v′ · v′}

, (30)

and

{v′ · v′} =
∑
i

∫
dt 〈v′iv′i〉 . (31)

{v′ · v′} represents the sum of the diagonal elements of

the Reynolds stress tensor averaged over the duration of

the simulation and over all the longitudes. εij ∼
〈
aij
vrms

〉
,

E ∼
〈

a
vrms

〉
, and vrms ∼ 〈v′iv′i〉 where a is a norm of a-

tensor, vrms is the root mean squared velocity. r1 and r2
denote the radii of the lower and upper boundaries of the

simulation domain, respectively. Importance measure,



8 Shimada et al.

Figure 8. The isotropic part of the β-tensor (β) extracted
from cases Low, Mid, and High plotted in meridional plane.

εij , from case High is calculated as:εαrr εαrθ εαrϕεγϕ εαθθ εαθϕ
εγθ εγr εαϕϕ

 =

0.15 0.14 0.06

0.18 0.09 0.08

0.08 0.17 0.04

 . (32)

This indicates that the upper two-by-two matrix formed

by αrr, αrθ, αθθ, and γϕ are dominant over the others,

which is consistent with Augustson et al. (2015). How-

ever, our results exhibit a larger contribution than those

of γr, which exceeds αrr, αθθ, and αrθ. In their study,

the importance measures take the value, 0.054, in εγr ,

0.355 in εαrr , 0.103 in εαθθ , and 0.124 in εαrθ . The rela-

tive contribution of each component of the a-tensor does

not vary significantly in all the cases.

Warnecke et al. (2018) extract the α-tensor and γ-

vector based on test-field methods. These quantities in

our result (Figure 6) have smaller structure than those

in Warnecke et al. (2018). The amplitudes of the struc-

tures, whose scales are smaller than 0.01R� are within

the range of 1σ and only the structures larger than

0.01R� are reliable. γr extracted by Warnecke et al.

(2018) changes the sign between inside and outside the

tangential cylinder, whereas our γr has the same sign

between these two regions. The cause of this difference

might come from the difference in rotational constraint

on the simulation, because the rotation rate of the sim-

ulation analyzed in Warnecke et al. (2018) is five times

larger than that of ours.

Secondly, the results of the β-tensor obtained through

this procedure are explained for each case using the en-

tire simulation interval. Figure 7 shows the β-tensor

extracted from case High. Negative values observed in

the diagonal elements are within the range of 2σ. Note

that estimation of the α-tensor is not significantly af-

fected by the inclusion of the β-tensor (see Appendix

B). To obtain the physical meaning from this β-tensor,

the sum of the diagonal elements is calculated as:

β ≡ 1

3
(βrr + βθθ + βϕϕ), (33)

Figure 9. Radial plot of the turbulent magnetic diffusivity,
β, explicit magnetic diffusivity, η, and explicit viscosity, ν,
averaged over the latitude from cases Low, Mid, and High.

where β corresponds to the turbulent magnetic diffu-

sivity introduced in the widely known mean-field dy-

namo model. Figure 8 presents the spatial structure

of β from case Low to High. The result indicates that

a positive value is observed through most of the con-

vection zone and increases toward the surface. Figure

9 presents the radial plots of β averaged over the lati-

tudes. β reaches its maximum value of 7×1011 cm2 s−1

for the Low, 4×1011 cm2 s−1 of case Mid, and 1×1011

cm2 s−1 of case High at depth r/R� ∼ 0.91. It is clear

that the turbulent magnetic diffusivity decreases with

an increase in the magnetic Reynolds number.

Note that we omit the results of δ-vector and κ-tensor

because the values of some components have less than

1σ noise level. Unfortunately, we can not compare these

results with those in the previous work by Simard et al.

(2016), because there were no description of the results

nor related discussion while these vector and tensor were

shown in the fitting formula (see their equation 5).

3.2. Induction of the Mean Magnetic Field

A coherent large-scale magnetic field is observed in

all the cases (see Figure 2 and Subsection 2.2). The el-

emental processes required to maintain the mean field

are analyzed to determine the construction mechanism

of the large-scale magnetic field. The induction equa-

tion can be decomposed as follows: (Brown et al. 2010;
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Figure 10. (a) 〈Bϕ〉, (b) 〈Aϕ〉, and (c) 〈Bθ〉 from case Low
plotted in meridional plane. The contours in (b) are at every
5 × 1011 cm G.

Nelson et al. 2013; Augustson et al. 2015):

∂ 〈B〉
∂t

= (〈B〉 · ∇) 〈v〉︸ ︷︷ ︸
MS

+ 〈(B′ · ∇)v′〉︸ ︷︷ ︸
FS

−(〈v〉 · ∇) 〈B〉︸ ︷︷ ︸
MA

−〈(v′ · ∇)B′〉︸ ︷︷ ︸
FA

−〈B〉 (∇ · 〈v〉)︸ ︷︷ ︸
MC

−〈B′(∇ · v′)〉︸ ︷︷ ︸
FC

−∇× (η∇× 〈B〉)︸ ︷︷ ︸
RD

. (34)

Equation (34) is used to search for important terms to

induce the mean field. The terms on the right-hand

side of Equation (34) represent the production of the

mean magnetic field by the mean shear (MS), fluctuating

shear (FS), mean advection (MA), fluctuating advection

(FA), mean compression (MC), fluctuating compression

(FC), and resistive diffusion (RD). In our results, the

spatial distributions of these terms do not vary signif-

icantly from the cases, but some fluctuating structures

that have a much smaller scale than the large-scale mag-

netic field are found in cases Mid and High. The result

from case Low is presented in the following section to

discuss the large-scale distribution.

A time period stretching over approximately 5 yr, is

selected to analyze the coherent large-scale magnetic

field, when the mean magnetic field has constant po-

larity. The average was taken over this period. Fig-

ure 10 presents the mean magnetic field of case Low.

The mean toroidal magnetic field, 〈Bϕ〉, is concentrated

at the base of the convection zone (r/R� . 0.8) and

low latitudes (|Θ| . 30◦). The toroidal magnetic vec-

tor potential, 〈Aϕ〉, depicted in Figure 10 (b) captures

the mean poloidal magnetic field as 〈Br〉 er + 〈Bθ〉 eθ =

Figure 11. (a) Latitudinal plot of time-averaged the domi-
nant terms in Equation (34) which contribute to the induc-
tion of 〈Bϕ〉 at the base of convection zone (r/R� 5 0.8).
(b) The same for 〈Bθ〉. The results for case Low are pre-
sented. These are averaged over 0.71R� 5 r 5 0.80R� and
filtered by a Gaussian filter with a half-width of 0.01R� in
the latitudinal direction to read large-scale characteristics.

〈BP〉 = ∇× (〈Aϕ〉 eϕ). 〈Bθ〉 is concentrated at the base

of the convection zone (r/R� . 0.8) and low latitudes

(|Θ| . 30◦). 〈Bθ〉 pointing in the opposite direction to

the bottom one is distributed at the middle depth of

the convection zone (0.8 . r/R� . 0.9). These spatial

structures of the mean magnetic field are common in the

other cases, despite the difference in the amplitudes.

Figure 11 (a) presents the latitudinal distribution of

the dominant terms in Equation (34), which contribute

to the induction of 〈Bϕ〉. These results are averaged

over 0.71R� 5 r 5 0.80R�. The contributions of all

the terms are listed in Appendix C. The Ω-effect (MS)

and fluctuating advection (FA) produce 〈Bϕ〉 at low lat-

itudes (|Θ| . 40◦); the fluctuating shear (FS) works

against production. The tendency of MS and FA to

produce 〈Bϕ〉 against FS is also observed in the other

cases. This is consistent with Nelson et al. (2013) for

their case D3b.
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Figure 12. Contribution from (a) αϕϕ, (b) αθϕ, and (c) γr
for case Low are plotted in meridional plane.

Figure 11 (b) presents the latitudinal distribution of

the dominant terms in Equation (34), which contributes

to the induction of 〈Bθ〉 at the base of the convection

zone. These results are averaged over 0.71R� 5 r 5
0.80R�. The contributions of all the terms are listed

in Appendix C. Figure 11 (b) demonstrates that the

fluctuating shear produces negative 〈Bθ〉 at low latitudes

(|Θ| . 20◦) against the fluctuating advection. At high

latitudes (|Θ| & 20◦), positive 〈Bθ〉 is observed around

the base of the convection zone (r/R� 5 0.8), and the

result presented in Figure 11 (b) is the radial average

over r/R� ≤ 0.8, due to which the signs of these terms

are reversed against the signs at low latitudes.

The contribution of the fluctuating field, that is, EMF,

is important in inducing 〈Bθ〉 at the base of the convec-

tion zone and low latitudes, as explained earlier. The

EMF is decomposed by each component of the α-tensor

and γ-vector and their contribution is evaluated as:

{∇ × (a · 〈B〉)}θ = −1

r

∂

∂r
(rαrϕ 〈Br〉)︸ ︷︷ ︸
Iαrϕ

+
1

r

∂

∂r
(rγθ 〈Br〉)︸ ︷︷ ︸
Iγθ

−1

r

∂

∂r
(rαθϕ 〈Bθ〉)︸ ︷︷ ︸
Iαθϕ

−1

r

∂

∂r
(rγr 〈Bθ〉)︸ ︷︷ ︸
Iγr

−1

r

∂

∂r
(rαϕϕ 〈Bϕ〉)︸ ︷︷ ︸
Iαϕϕ

. (35)

Figure 12 presents the dominant terms, that is, Iαϕϕ ,

Iαθϕ , and Iγr , on the right-hand side of this formula.

This indicates that 〈Bθ〉 is produced by the effect of αϕϕ
against the counter-effects of αθϕ and γr at the base of

the convection zone and at low latitudes.

4. DISCUSSION

In Section 3, the mean-field parameters such as the

a-tensor (Figure 6) and the turbulent magnetic diffu-

sivity β (Figure 9) are obtained. The structure of a

large-scale magnetic field is also obtained at a steady

polarity period (Figure 10), and its induction (Figures

11 and 12) is analyzed. These results are used to in-

fer the mechanism which maintains a large-scale field

at high Reynolds numbers, which reverses their polari-

ties. The cause of the enhancement of γr in comparison

to the previous studies (Racine et al. 2011; Augustson

et al. 2015; Simard et al. 2016) is also discussed.

4.1. The Large-Scale Magnetic Field in High Magnetic

Reynolds Number

The magnetic energy of the large-scale field decreases

from case Low to case Mid and remains at the same

level in case High (see Figure 3). This is explained by

using the explicit diffusivities and turbulent magnetic

diffusivities (Figure 9).

The general effects of the explicit diffusivity and tur-

bulent magnetic diffusivity on large and small-scale mag-

netic fields are discussed here before discussing the re-

sults of this study. Explicit viscosity and magnetic dif-

fusivity contribute to the smoothening of the spatial

and temporal fluctuations of the velocity and magnetic

field. Consequently, turbulence and small-scale dynamo

are suppressed by explicit diffusivities, and a large-scale

magnetic field is maintained. Conversely, the suppres-

sion of the turbulence and small-scale dynamo, which

distract the large-scale magnetic fields, is less efficient

when the explicit diffusivities become smaller. Conse-

quently, the large-scale magnetic field is distracted. This

implies that the energy of the large-scale magnetic field

decreases while that of the small-scale magnetic field in-

creases. The turbulent magnetic diffusion is expressed

in the induction equation of a large-scale field as:

∂ 〈B〉
∂t

= [· · · ]−∇× (β∇× 〈B〉), (36)

whereas it is expressed in the induction equation of the

small-scale field with a plus sign, as:

∂B′

∂t
= [· · · ] +∇× (β∇× 〈B〉). (37)

This indicates that the energy dissipated from the large-

scale field by the turbulent diffusion, is converted into a

small-scale field. Note that, not all the energy lost from

the large-scale magnetic field due to turbulent diffusion

is converted to that of the small-scale magnetic field. A

lesser amount of energy present in the large-scale mag-

netic field is converted into a small-scale magnetic field

when the turbulent magnetic diffusivity decreases.

The simulation results demonstrate a decrease in the

energy of the large-scale magnetic field and an increase

in that of the small-scale one from case Low to case
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Mid (Figure 3), where the Reynolds number increases

between these cases. The explicit viscosity, ν, and the

magnetic diffusivity, η, between these cases demonstrate

larger differences than the turbulent magnetic diffusiv-

ity (Figure 9). This result can be explained by the ef-

fect of the explicit viscosity and magnetic diffusivity, as

described above. Case Mid has smaller explicit diffusiv-

ities than case Low (Figure 9), and the magnetic field of

case Mid, thus forms a less large-scale structure. Con-

sequently, the energy of the large-scale magnetic field

decreases, and that of the small-scale magnetic field in-

crease in case Mid.

However, the energy of the large-scale magnetic field

remains at the same level from case Mid to case High,

and the energy of the small-scale field increases. Only

the turbulent magnetic diffusivity, β changes between

these cases, although there is no change in the explicit

diffusivities (Figure 9). This can be attributed to the

effect of the turbulent magnetic diffusivity, as explained

earlier. The decrease in the turbulent diffusivity indi-

cates the suppression of energy conversion toward the

small-scale field. The maintenance of the magnetic en-

ergy of the large-scale field from case Mid to case High

(Figure 3) can thus be explained by the decrease in the

turbulent diffusivity, which suppresses the energy con-

verted from a large-scale magnetic field.

The decrease in the turbulent magnetic diffusivity in

case High, results in the large-scale magnetic field be-

ing maintained. Here we refer to the previous study

on the large-scale magnetic field with a high magnetic

Reynolds number. Cattaneo & Tobias (2014) calcu-

late kinematic dynamo with high magnetic Reynolds

number, which gives 2.5D (two-dimensional and three-

components) fluid velocity. They presented the suppres-

sion principle, which states that the construction of a

large-scale magnetic field for a higher magnetic Reynolds

number requires the suppression of the small-scale dy-

namo. Otherwise, the dynamo scale shifts towards a

smaller one for higher magnetic Reynolds numbers, re-

sulting in the destruction of the large-scale fields. Catta-

neo & Tobias (2014) conducted kinematic calculations,

in which the feedback from the magnetic field to the

flow field was not considered. Our results for the mag-

netic energies of the large-scale and small-scale fields do

not correspond to the results of the suppression princi-

ple, in that the large-scale magnetic field in case High is

maintained without suppressing the small-scale dynamo.

This is because the magnetic field exceeds the equipar-

tition strength with velocity in the small-scale field in

case High (Figure 5), and kinematic approximation is no

longer applicable. In this case, the Lorentz force feed-

back from the small-scale magnetic field to the velocity

Figure 13. Radial plot of γr during the maxima and the
minima for the case High. The 1σ section is represented by
the shadow. These are taken as latitudinal averages at low
latitudes (0 5 Θ 5 30◦).

becomes important. This effect is thought to be incorpo-

rated into the turbulent magnetic diffusivity through the

small-scale velocity in the turbulent EMF (Equations

(13) and (15)). Therefore, our study states that a large-

scale magnetic field can be maintained even when the

small-scale dynamo works efficiently with high magnetic

Reynolds numbers. Hotta et al. (2016) reported that

an efficient small-scale dynamo suppresses the small-

scale flow which destroys the large-scale magnetic field.

Our analysis proposes that the destruction can be in-

corporated into the turbulent magnetic diffusivity in the

mean-field electrodynamics. The estimation of the tur-

bulent magnetic diffusivities quantitatively supports the

effect proposed by Hotta et al. (2016).

In our simulation, the turbulent magnetic diffusivity

significantly decreases with the number of grid points.

We cannot confirm that this tendency continues in the

further large numbers of grid points. Whether the sup-

pression of turbulent magnetic diffusivity and conse-

quent maintenance of the large-scale magnetic field oc-

cur at further high Reynolds numbers are needed to be

investigated.

4.2. Polarity Reversal

All the cases in our simulations show the polarity

reversal of the large-scale magnetic field (see Figure

2). The large-scale magnetic field comprises the spatial

structures presented in Figure 10 during the interrever-

sal period. Both 〈Bϕ〉 and 〈Bθ〉 are concentrated at the

base of the convection zone, where 〈Bθ〉 pointing in the

opposite direction, is distributed at the middle depth of

the convection zone. 〈Bϕ〉 is produced by the Ω-effect

and fluctuating advection (FA) against the destruction

effect from the fluctuating shear (FS), whereas 〈Bθ〉 is

produced by the effect of αϕϕ against the effects of αθϕ
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Figure 14. Radial plot of the terms which contribute to γr
in Equation (38). These are averaged over the entire lati-
tudes. The average period is from 5.5 yr to 27.4 yr.

and γr at the base of the convection zone and low lati-

tudes (see Subsection 3.2).

The fluctuating shear reverses the sign of 〈Bϕ〉 (Fig-

ure 11) based on the obtained relation among the field

induction effect. 〈Bθ〉 which has reversed sign is dom-

inantly induced by αθϕ at the base of the convection

zone and at low latitudes. This brings the conclusion

that αθϕ reverses the sign of 〈Bθ〉.
The Ω-effect can amplify 〈Bϕ〉, and αϕϕ can amplify

〈Bθ〉 at the base of the convection zone after the signs

of both 〈Bϕ〉 and 〈Bθ〉 are reversed by these effects.

Our analysis of the cycle phase dependence of the α-

tensor and γ-vector provides additional insights into the

triggers of the reversal of 〈Bθ〉. The α-tensor and γ-

vector are estimated using whole periods of the maxima

and minima through the procedure described in Subsec-

tion 3.1 to estimate the cycle phase dependence. The

definitions of the minima and maxima are presented in

Appendix D. The radial pumping in the magnetic min-

ima is observed to be stronger than the maxima (Figure

13). αϕϕ and αθϕ which contribute to the induction of

〈Bθ〉 do not demonstrate a clear difference between the

maxima and minima (see Appendix D). Consequently,

the strengthened downflow produced by γr during the

minima may trigger the polarity reversal of 〈Bθ〉.

4.3. The Enhancement of Radial Turbulent Pumping

Our results for the α-tensor and γ-vector differ from

those of the previous studies (Racine et al. 2011; Au-

gustson et al. 2015; Simard et al. 2016) in relative con-

tributions from γr (Subsection 3.1). The contribution

of γr exceeds the components of the α-tensor. The

model of the γ-vector in terms of the small-scale velocity

and magnetic field under the stratification proposed by

Rädler et al. (2003) as:

γ = −1

6
∇
(
〈v′2〉 − 〈B

′2〉
4πρ0

)
τ0 (38)

is employed to interpret this difference, where τ0 repre-

sents the correlation time.

Figure 14 presents each term in Equation (38). This

indicates that the amplitude of γr is primarily enhanced

by the contribution from the small-scale magnetic field.

The model of the α-tensor and γθ is also verified, and

the results demonstrate that the amplitudes of these

terms are mainly determined by the contribution from

the small-scale velocity and do not exhibit significant

differences between the cases (see Appendix E). Our en-

hancement of γr when compared to the previous stud-

ies (Racine et al. 2011; Augustson et al. 2015; Simard

et al. 2016) can be attributed to the fact that only γr
is affected by the small-scale magnetic field since the

small-scale magnetic field is significantly enhanced in

our simulation.

5. CONCLUSION

Mean-field analyses are conducted on the results of the

global 3D MHD calculations to understand the physics

which maintain a coherent large-scale magnetic field at

high Reynolds numbers (Hotta et al. 2016). Three cases

with increasing Reynolds numbers are considered (Fig-

ure 2). The energy of the large-scale magnetic field de-

creases from case Low to case Mid and remains at the

same level in case High (Figure 3 (a)).

The turbulent magnetic diffusivity in each case is ob-

tained through mean-field analysis (Racine et al. 2011;

Simard et al. 2016). The results (see Figure 8 and 9)

demonstrate that the turbulent diffusivity monotoni-

cally decreases with an increase in the Reynolds num-

bers. The maximum value of the turbulent magnetic

diffusivity is 7×1011 cm2 s−1 in case Low and 1×1011

cm2 s−1 in case High, at the depth, r ∼ 0.91R�.

The reduction of the turbulent diffusivity in the high-

Reynolds number case leads to inefficient transformation

since the turbulent diffusivity transforms the magnetic

energy of the large-scale field into that of the small-

scale field (see Subsection 4.1). This is considered to be

the primary cause for the maintenance of the large-scale

magnetic fields at high Reynolds numbers (case High).

The α-tensor and turbulent pumping are also obtained

through mean-field analysis. The spatial structures of

these components are consistent with those of the pre-

vious studies (Racine et al. 2011; Augustson et al. 2015;

Simard et al. 2016) for instance: (1) The diagonal com-

ponent of the α-tensor is antisymmetric about the equa-

tor and has different signs between the surface and the
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base. (2) Radial pumping, γr, is downward (negative) in

most of the convection zone and upward (positive) in the

subsurface. (3) The latitudinal pumping, γθ, is equator-

ward (positive/negative in the northern/southern hemi-

sphere) in the lower convection zone and polarward in

the subsurface.

Our results for the α-tensor and γ-vector differ from

those of previous studies (Racine et al. 2011; Augustson

et al. 2015; Simard et al. 2016) in the relative contribu-

tions from γr. The model of the α-tensor and γ-vector

under the stratification proposed by Rädler et al. (2003)

in our simulation indicates that only γr is significantly

affected by the small-scale magnetic field. Our enhance-

ment of γr in comparison to that of the previous studies

can be attributed to this effect since the small-scale mag-

netic field is significantly enhanced in our simulation.

〈Bϕ〉 is concentrated at the base of convection zone

(r/R� . 0.8) and low latitudes (|Θ| . 30◦) during the

period in which the polarity of the large-scale field is con-

stant. 〈Bθ〉 is concentrated at the base of the convection

zone (r/R� . 0.8) and low latitudes (|Θ| . 30◦), where

〈Bθ〉 pointing in the opposite direction, is distributed in

the middle of the convection zone (0.8 . r/R� . 0.9)

during this period. Our estimation of the induction

equation demonstrates that the Ω-effect (MS) and ad-

vection by fluctuating flow (FA) produce 〈Bϕ〉, and

shearing due to the fluctuating flow (FS) works against

the production at low latitudes in the base of the convec-

tion zone. 〈Bθ〉 in this area is produced by shearing due

to the fluctuating flow (FS), and advection due to the

fluctuating flow (FA) works against it. The contribu-

tions from the α-tensor and turbulent pumping in pro-

ducing 〈Bθ〉 are also verified. The results demonstrate

that the effect of αϕϕ produces 〈Bθ〉 at low latitudes in

the base of the convection zone against the effects of αθϕ
and γr.

Based on the obtained relation among the field induc-

tion effect, the fluctuating shear (FS) reverses the sign

of 〈Bϕ〉 (Figure 11), and αθϕ plays a significant role

in reversing the sign of 〈Bθ〉 in the base of the convec-

tion zone (Figure 12). Ω-effect and αϕϕ can amplify

both 〈Bϕ〉 and 〈Bθ〉 after the sign of 〈Bϕ〉 and 〈Bθ〉
are reversed. The cycle phase dependence of γr (Figure

18) indicates that the strengthened downflow due to γr
during the minima may trigger the polarity reversal of

〈Bθ〉. This effect may be incorporated into the fluctu-

ating advection (FA) in Equation (34) at low latitudes

(|Θ| . 20◦). We plan to conduct the mean-field dynamo

simulation to quantitatively estimate the effect of αϕϕ
and γr on the polarity reversal.
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APPENDIX

A. RADIAL DISTRIBUTIONS OF THE

LARGE-SCALE FIELD

Figure 15. Temporal evolution of the radial distribution of
〈Bϕ〉 at Θ = 20◦.

Figure 15 depicts the temporal evolution of the radial

distribution of the mean toroidal magnetic field, 〈Bϕ〉, at

latitude, Θ = 20◦, where the field is concentrated. The

large-scale magnetic field is observed to be concentrated

at the base of the convection zone (r < 0.8R�) in all the

cases.

B. ALPHA TENSOR OBTAINED WITHOUT USING

FIRST DERIVATIVES OF MEAN MAGNETIC

FIELD IN THE FITTING PROCEDURE

Subsection 3.1 presents the result of the α-tensor

and the γ-vector (Figure 6) obtained from the fitting

method, which includes the first derivatives of the mean

magnetic field in the fitting procedure (Equation 18).

The result obtained by the method which does not in-

clude the first derivatives of the mean magnetic field

in the fitting procedure is presented in this instance,

as originally proposed by Racine et al. (2011). In this
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method, the fitting formula for Equation 18 is described

as follows:

Ei(t, r, θ) = ãij(r, θ) 〈Bj〉 (t, r, θ), (B1)

The fitting procedure is almost identical to that in Sub-

section 3.1 except for the designed matrix in SVD (see

Racine et al. 2011, for further detail). The α-tensor and

γ-vector are automatically determined through Equa-

tions (16) and (28) after ã is estimated by the fitting

procedure.

Figure 16. Components of the a-tensor extracted from case
High plotted in meridional plane. The signs of γθ, αrθ, and
αθϕ differ from those in Racine et al. (2011) owing to the
definition of the coordinates. The color bar and scaling are
uniform across all the panels.

Figure 16 presents the obtained α-tensor and γ-vector,

and it can be observed that there is no significant dif-

ference between Figure 6 and Figure 16.

C. INDUCTION EFFECTS

Figure 17 presents all the terms on the right-hand side

of the induction equation (Equation 34).

Figure 17. (a) Latitudinal plot of time-averaged whole term
in Equation (34) which contribute to the induction of 〈Bϕ〉
at the base of convection zone. (r/R� 5 0.8) (b) Latitu-
dinal cut of whole term in Equation (34) which contribute
to the induction of 〈Bϕ〉 at the base of base of convection
zone (r/R� 5 0.8). Both (a) and (b) correspond to case
Low, which are averaged over 0.71R� 5 r 5 0.80R� and
filtered by a Gaussian filter with a half-width of 0.01R� in
the latitudinal direction to read large-scale characteristics.

D. CYCLE PHASE DEPENDENCE OF THE

ALPHA-TENSOR AND THE GAMMA-VECTOR

The maxima and minima are defined as the period in

which the magnetic energy is larger and smaller than

its temporal average over the entire simulation interval.

The minima includes the reversal phase in this defini-

tion. Only the northern hemisphere is considered for

this definition along with the related arguments in Sub-
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section 4.2 due to the weak parity synchronization in

our simulation results.

The radial component of the turbulent pumping γr
during the maxima and minima are shown for the High

case in Figure 13 (b) and for the other cases in Fig-

ure 18. All the cases exhibit the trend that downward

pumping is stronger in the minima than in the maxima

by approximately 1σ level.

Figure 19 shows αϕϕ and αθϕ during the maxima and

the minima for the case High. Neither αϕϕ and αθϕ do

not indicate a clear difference between the maxima and

minima.

Figure 18. Radial plot of γr during the maxima and the
minima for (a) case Low and (b) case Mid. The 1σ section
is represented by the shadow. Both (a) and (b) show the
latitudinal average at low latitudes (0 5 Θ 5 30◦).

Figure 19. Radial plot of (a) αϕϕ and (b) αθϕ during the
maxima and the minima for case High. The 1σ section is
represented by the shadow. (a) shows the latitudinal average
at low latitudes (0 5 Θ 5 20◦). (b) shows the latitudinal
average at low latitudes (0 5 Θ 5 30◦).

E. MODEL OF THE MEAN-FIELD COEFFICIENTS

The models of the α-tensor are used in terms of

the small-scale velocity and magnetic field proposed by

Rädler et al. (2003), in order to interpret the differ-

ence between the mean-field coefficients in our study and

those of previous works (Racine et al. 2011; Augustson

et al. 2015; Simard et al. 2016),as follows:

αij = αδij , (E2)

α = − 1
3

(
〈v′ · (∇× v′)〉 − 〈B

′·(∇×B′)〉
4πρ0

)
τ0, (E3)

where τ0 is the correlation time. We also use their model

for the γ-vector, that is, Equation (38). The results for

γr are presented in Figure 14 and show a significant con-

tribution from the small-scale magnetic field (Subsection

4.3). Conversely, the results for α and γθ (Figure 20) ex-

hibit a weak contribution from the small-scale magnetic

field.
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Figure 20. Radial plot of the terms which contribute to (a) α in Equation (E3) and (b) γθ in Equation (38). These are
averaged over latitudes between 45◦ < Θ < 90◦. The average period is from 5.5 yr to 27.4 yr.
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